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During the last decade a new 
computational approach 
has evolved in electronic 
structure theory, where no 

critical part of a calculation is allowed to 
increase in complexity more than linearly, 
0(Ν), with system size, Ν [1]. This linear 
scaling electronic structure theory extends 
conventional tight-binding, Hartree-Fock, 
or Kohn-Sham methods to the study of very 
large complex systems previously out of 
reach. This is critical for applications to new 
important areas of research, such as biology, 
medicine, and nanoscience, which requires 
the ability to handle much larger systems  
than previously possible.

Until recently most attention was focused on 
linear scaling 0(Ν) methods for calculating 
the ground state electronic energy. However, 
an important problem that so far has received 
little attention is the 0(Ν) computation 

of materials response properties, such 
as interatomic potentials, vibrational 
frequencies, the polarizability, nuclear 
magnetic resonance, and Raman intensities. 

We have introduced a new and surprisingly 
simple reduced complexity quantum 
perturbation theory [2, 3]. The approach is 
based on 0(Ν) spectral purification projection 
schemes for the zero-temperature density 
matrix [4, 5]. The new perturbation theory 
makes it possible to calculate the adiabatic 
response properties for nonmetallic materials 
to any order within linear scaling effort.

The numerical efficiency of density matrix 
purification projection methods is based on 
the quantum locality (or nearsightedness) 
of nonmetallic systems, manifested in the 
approximate exponential decay of the density 
matrix with interatomic separation. Using 
efficient sparse matrix algebra, neglecting 
matrix elements below a chosen numerical 
threshold, the density matrix can be 
constructed with a computational cost that 
scales linearly with system size.

The general idea behind purification is 
that the density matrix D can be described 
recursively as

D = θ(µI – H ) =n→∞
lim Fn(Fn – 1(...F 0(H )...)),     (1)

where  Fn(Fn – 1(...F 0(H )...))  is an iterative 
expansion of the Heaviside step function
θ(µI – H ).  The functions Fn are low order 
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Figure 1— 
The computational 
cost for the first 
hyperpolarizability 
of water clusters as a 
function of basis set and 
cluster size [6].



polynomials, projecting eigenvalues to fix 
points at 0 for unoccupied states and to 1 
for occupied states, thereby “purifying” the 
approximate density matrix. By choosing the 
purification projectors Fn to be polynomials, 
only matrix-matrix operations have to be 
performed. This is achieved with linear 
scaling 0(Ν) complexity for sufficiently  
sparse systems.

The main problem with density matrix 
perturbation theory is the discontinuous 
relation between the zero temperature 
density matrix and the Hamiltonian given 
by the step function in Eq. 1. This makes 
an expansion of D around a perturbation 
in H difficult. At finite temperatures the 
discontinuity disappears, but instead the 
analytic Fermi-Dirac distribution involves 
problems with matrix exponentials and 
the chemical potentials. However, within 
the recursive purification scheme an initial 
perturbation in H can be carried through at 
each projection level, either exactly or to any 
order. The resulting perturbed projection 
scheme provides an efficient technique for the 
calculation of materials response properties 
within a reduced complexity formalism [2, 3].

Our new perturbation theory has been 
implemented in MONDOSCF, a suite of 
parallel linear scaling program for the ab 
initio calculation of electronic structure 
properties. Linear scaling complexity was 
demonstrated for the computation of 
higher order response properties of 3D 
structures. Figure 1 shows the computational 
cost for calculating the first electric 
hyperpolarizability of large water clusters by 
solving the coupled perturbed self-consistent 
field equations [3, 6]. After about 50–100 
water molecules the computational cost scales 
approximately linearly with system size. 

The locality of the density matrix is described 
by the approximate exponential decay of its 
matrix elements as a function of interatomic 
separation. This behavior is found also for the 
density matrix derivatives corresponding to 
the polarizability and hyperpolarizabilities, as 
illustrated in Fig. 2. 

The density matrix perturbation theory 
can be applied in many contexts and we 
are currently extending the theory to new 
problems, including structural response 
within nonorthogonal representations for the 
calculation of vibrational frequencies. 
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Figure 2— 
The approximate 
exponential decay of 
the density matrix and 
its derivatives as a 
function of interatomic 
separation.
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